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This paper presents a method for the dynamic analysis of initially tensioned orthotropic
thin-walled cylindrical tubes conveying steady #uid #ow, based on Sanders' non-linear
theory of thin shells and the classical potential #ow theory. The method is relatively
straightforward, using a hydrodynamic pressure formulation derived from the velocity
potential, a dynamic coupling condition at the #uid}structure interface and two-noded
frustum elements to assess the dynamic behaviour of these tube/#uid systems accurately.
A non-linear strain}displacement relationship is also deployed to derive the geometric
sti!ness matrix due to the initial stresses and hydrostatic pressures. The equations of motion
for the tube and #uid are solved by a "nite element method, and this is validated by
comparing the natural frequencies obtained with other published results. The in#uence of
material properties, #uid #ow velocities and initial axial tensions on the natural frequencies
is then illustrated and discussed.
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1. INTRODUCTION

The dynamic behaviour of initially tensioned cylindrical tubes conveying #uid is of practical
interest in, e.g., digital blood vessels subjected to external vibration [1, 2], and
above-ground pipelines exposed to wind gusts which may cause destructive vibration [3].
The dynamics of cylindrical tubes conveying #uid have been studied extensively, generally
on the basis of various shell theories such as those due to FluK gge [4], Sanders [5], Love
[6] and Donnell [7]. An excellent review of the problem is given by Chen [8]. However,
numerical analysis of the vibration of initially tensioned isotropic cylindrical
tubes conveying #uid is limited. Similarly, while there is some literature relevant to
the vibration of initially tensioned orthotropic thin-walled cylindrical tubes
containing quiescent #uid, there appears to have been no examination of the in#uence of
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either initial tensions or orthotropies on the natural frequencies of these tubes when
conveying #uid.

Jain [9] "rst studied the vibration of orthotropic cylindrical shells "lled with
incompressible #uid by using Love's shell equations and potential #ow theory, while Chen
et al. [10] considered a similar case but with a compressible #uid. Lakis et al. [11] presented
an approach which combined the "nite element method and the Sander shell theory,
derived from Love's shell equation, for application to the dynamic problem of anisotropic
#uid-"lled conical shells. In this approach, an exact displacement function, derived from the
Sander shell theory, was used. All these investigations were, however, concerned with
orthotropic cylindrical/conical shells containing quiescent #uid. Recently, Selmane and
Lakis [12] extended earlier studies [11] by presenting an improved model which considered
the in#uence of #owing #uid on the vibration of an open anisotropic cylindrical shell. They
demonstrated the e!ect of the presence of internal and/or external #uid on the free vibration
of orthotropic shells, but no analysis was made of the e!ect of #ow velocities or orthotropies
on the vibration of the shells. Sivadas [13] also discussed the e!ect of initial tension on the
vibration of empty orthotropic cylindrical shells. The development of a new method for the
dynamic analysis of initially tensioned orthotropic thin-walled cylindrical tubes conveying
steady #uid #ow is therefore timely and relevant in the context of other recent works.

In the present study a non-linear strain}displacement relationship is employed to derive
an initial stress matrix. A hydrodynamic pressure function is obtained from the velocity
potential and the dynamic coupling condition at the #uid}structure interface. Sanders'
non-linear theory of thin shells and the classical potential #ow theory are used to establish
a comprehensive mathematical model in which the "elds of the #owing #uid and the moving
shell are fully coupled. The e!ects of material properties, initial axial tensions and #ow
velocities on the vibratory behaviour of initially tensioned cylindrical tubes conveying
steady #uid #ow are presented and discussed.

2. FORMULATION OF THE PROBLEM

2.1. THE EQUATION OF MOTION

The physical model considered consists of an initially tensioned, orthotropic, elastic,
thin-walled cylindrical tube conveying inviscid #uid. The dynamic problem of this
#uid}structure system is formulated in a cylindrical polar co-ordinate (x, h, r) system as
shown in Figure 1. The co-ordinate axis x is chosen to coincide with the cylindrical tube
centreline, while the co-ordinate axes r and h are taken along the radial and circumferential
directions respectively. The tube axes and geometric parameters are shown in Figure 1. It is
assumed that the e!ect of the gravity force on the tube is negligible. Although speci"c
examples of tube material, #uid properties and vibration parameters will be examined later,
the following model is formulated as generally as possible.

Sanders' non-linear theory of thin shells [14] is used to obtain the equation of motion of
the system. This theory is derived from the three-dimensional elasticity equations and
depends on certain assumptions (which are therefore the assumptions inherent in the
present model), including the one that the shell thickness is in"nitesimal in comparison with
the minimum radius of curvature (i.e., R/h'10), the displacement gradients are small, and
the tube wall thickness remains constant throughout.

The strain tensor "eld, e, for the initially tensioned cylindrical tube conveying #uid is
represented by (all symbols are listed for convenience in the Nomenclature)

e"e0#e
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#e

NL
"e0#Me
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Figure 1. Schematic diagram of the #uid}structure system under investigation.

VIBRATION OF FLUID-CONVEYING TUBES 95
and e
L

and e
NL

are de"ned by

e
L
"G

u
x,x

(uh,h#u
r
)/R

uh,x#u
x,h/R

!u
r,xx

!(u
r,hh!uh,h)/R2

!2u
r,xh/R#3

2
uh,x/R!1

2
u
x,h/R2

H , e
NL

"G
1
2
(u

r,x
)2#1

8
(uh,x!u

x,h/R)2

1
2
(uh!u

r,h)2/R2#1
8
(uh,x!u

x,h/R)2

(u
r,x

u
r,h!uhur,x

)/R

0

0

0
H .

(2)

After neglecting the normal stress, namely p
r
"0, the equations of the generalized Hook's

law for an orthotropic thin cylindrical shell are written as [15]:
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The bending moments and stress components of the shell wall are illustrated in Figure 2.
The constituent relationship between the generalized stress tensor and the strain tensor of
the reference surface for an orthotropic shell are then given, as in reference [14], as

r"MN
xx

, Nhh , N
xh , M

xx
, Mhh , M

xhNT"De, (4)

where D represents the orthotropic shell stress}strain matrix, which is given by [15]
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Figure 2. A cylindrical shell element, with the bending moments and stress components labelled.
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where D
ij

(i, j"1,2, 6) characterizes the mechanical properties of the orthotropic
cylindrical tube material, and may be listed as
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For an isotropic material, D
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At #uid}structure interfaces, the surface traction exerted on the tube wall can be
separated into two parts: one due to steady hydrostatic pressures and the other due to
hydrodynamic pressures. The strain energy of the tube and the energy of external forces on
the tube are given, respectively, by

<(u)"1
2 PX

t

eTDedX
t
, and =(u)"PX

t

uT .
t
uK dX

t
!PC

t

uT (ps
t
#pd

t
#q

t
) dC

t
, (6)

where the dot represents the derivative with respect to time. The total potential energy of
the tube is therefore given by
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Applying the d'Alembert principle [16], the following equation is obtained:
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The cylindrical shell also contains a #uid, which may be conveyed or quiescent. An
incompressible, inviscid #uid occupies a region X

f
within the cylindrical tube, which has

a boundary C
f
. The #uid gravity force is neglected. The irrotational steady #ow in X

f
is

governed by the Laplace equation in the cylindrical polar co-ordinate system, i.e.,

+ 2U"
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The total #ow is composed of two components: one due to the steady #ow velocity, v
0

, and
the other due to a perturbation velocity, v( , associated with the oscillation of the tube wall.
Similarly, the #uid pressure within the perturbed #uid is also composed of hydrostatic and
hydrodynamic pressures. Therefore, the total #ow velocity and pressure can be expressed,
respectively, in the form
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For an irrotational #ow, the perturbation #ow velocity can be expressed as a function of the
velocity potential:
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The dynamic condition on #uid}shell surfaces can be determined by the Bernoulli equation
for the disturbed motion, i.e.,

o
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Upon introducing equations (9) and (10) into equation (11), the linearized disturbed
pressure on the #uid}shell interface is expressed as
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f
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In order to achieve closed-form solutions and complete the model, boundary conditions
must be imposed. At #uid}structural interfaces, impermeability characterizes the coupling
conditions. The motion of the tube wall and #uid is fully coupled by the interface radial
velocities; i.e.,
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In addition to the kinematic boundary conditions, continuity of traction at the
#uid}structural interfaces is imposed, i.e.,

p
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2.2. FINITE ELEMENT FORMULATION

After discretizing the tube into cylindrical frustums, the tube wall displacement, u, may be
expressed in the form:
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where N
t
is the shape function, which is given in Appendix A. By using equations (2) and

(15), the linear and non-linear strain "elds are rewritten:
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where B
L

and B
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are also listed in Appendix A.
Substituting equations (1), (2), (15) and (16) into equation (7), the following non-linear

algebraic equation is obtained:
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are coe$cient matrices
respectively.

Considering the #uid-shell coupling characteristics at the interface, the potential function,
U, may be separated into the form:

U(r, h, x, t)"W (r)R(x, h, t ). (18)

Substituting equation (18) into equation (13) leads to:
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Upon substituting equation (19) into equation (8), the following equations are obtained:
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It is assumed that the space dependence of the displacement vector, u, is of the form ebx/R#ut

in which b is the complex quantity and u is the complex frequency. Using the method of
FroK benius [17], the solution of the ordinary di!erential equation (20) is obtained in the
general form:
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For internal #ow, in order to arrive at a "nite solution on the axis of the tube it is necessary
that C

2
is set to be zero; for external #ow, the constant C

1
is equal to zero as rPR. The

potential function may be straightforwardly obtained from equations (19) and (21):
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Characteristic values, j
j
, can be obtained by solving the characteristic equation given in

Appendix B, and expressed as j
i1
"$k

1
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1
and j
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2
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2
. The values of j

j
which

contribute most to the modal shape are those with small modulus. For these two sets of
characteristic values (namely j

i1
and j
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), the one with smaller modulus may be used to

represent the displacements adequately. The values of the real part of the function
I(n, j, Rin ) which correspond to j

i1
or j

i2
are constant, and the corresponding imaginary

parts are associated with damping. Bearing in mind the assumption that the space
dependence of the displacement vector, u, is of the form ebx/R, and using equations (2), (15),
(22) and (23), the linearized perturbation pressure acting on the tube wall is obtained:
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This approximation and assumption will be validated by comparing numerical results with
other existing results.

Substituting equation (24) into equation (17), the following equation governing the
motion of the coupled #uid-tube is obtained:
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In the above, the sti!ness matrix can be decomposed into three parts: the geometric
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dependent on the "eld variables. It is important to note that the nonlinear
strain}displacement relationship is employed to account for the e!ect of initial stresses in
the tube wall on the whole sti!ness matrix of the system. But as only small vibration of
initially tensioned thin orthotropic cylindrical shells conveying #uid is considered in this
paper, the non-linear terms (the non-linear elastic modulus matrix) are neglected in the
subsequent analysis.

Upon assembling elemental structural matrices of the #uid}structure system, a standard
equation for the eigenproblem of initially tensioned orthotropic thin-walled cylindrical
tubes is obtained:

MUG #CU0 #KU"0. (26)

The eigenvalue and eigenvector problem is solved by means of an equation reduction
technique [12]. Equation (26) can be rewritten in the form:
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Bearing in mind the assumption that U has the form eut, the eigenvalue problem can be
expressed in the form of the determinant

DK!uI D"0, (28)
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where K"C
0

!M~1K

I

!M~1CD. For the special case of quiescent #uid (;"0), the

eigenvalue problem is reduced to DM~1K!u2I D"0.

3. NUMERICAL EXAMPLES

The authors have carried out calculations to test the present method on four separate
cases: empty and #uid-"lled isotropic cylindrical shells, an initially tensioned orthotropic
cylindrical shell, orthotropic cylindrical shells in the absence of or containing an
incompressible #uid, and an isotropic cylindrical shell conveying #uid. The aim has been to
validate the model by comparison with accepted results, and then apply it to situations
which have not previously been investigated.

First, a convergence analysis and comparison with the natural frequencies of #uid-"lled
and empty isotropic steel cylindrical shells were performed. The shell was taken as simply
supported at both ends, with the following physical and geometric data [18]: o

f
/o

t
"0)128,

l"0)29, h/R"0)00667, ¸/R"6)06. The results of the model applied to this system can be
seen in Table 1, which shows that stability is achieved when 30 or more "nite elements are
used. In this study, convergence was assumed when the relative error between successive
calculations was less than e"0)1%, where e is de"ned by

e"
Dui

mn
!ui~1

mn
D

ui~1
mn

. (29)

All subsequent calculations were therefore carried out using 30 "nite elements. It may also
be seen from this table that the present model shows a relatively small margin of error for
calculations for the isotropic shell in the absence of, or containing, #uid. The maximum
di!erence between the experimentally measured [18] and the predicted frequencies is 5)1%.

In the second calculation, the free vibration of a prestressed empty orthotropic cylindrical
shell, simply supported at both ends, was analyzed and compared with the results of Sivadas
TABLE 1

Convergence of natural frequencies with number of ,nite elements used, and subsequent
comparison with experimental results in reference [18]

Natural frequency u
mn

Empty shell Fluid-"lled shell
Number of
"nite elements u

16
u

26
u

17
u

27
u

16
u

26
u

17
u

27

5 1499 2287 1938 2448 714 1089 976 1233
10 1429 1767 1908 2076 681 841 962 1046
15 1421 1688 1907 2032 676 831 961 1024
20 1419 1664 1908 2022 675 793 960 1018
25 1418 1655 1909 2018 675 788 960 1017
30 1417 1650 1910 2017 675 786 960 1016

Experiment [18] 1430 1570 1938 2050 680 755 970 1000
Relative error 0)91% 5)10% 1)44% 1)61% 0)74% 4)11% 1)03% 1)60%
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[13]. The following dimensionless parameters were introduced:

u6
mn
"u

mn
¸(o

t
/Eh)1@2, (30a)

¹M
x
"¹

x
(1!l2

xh)/EhRh, (30b)

where Eh is the Young's modulus in the direction transverse to the "bre and l
xh is the major

Poisson ratio. The system had the following physical and geometric properties:
E
x
"172)7 GPa, Eh"7)2 GPa, G

xh"3)76 GPa, o
t
"1550 kgm~3, l

xh"0)26, R/h"25,
¸/R"4. Figure 3 shows a comparison of the results obtained by the present method and
the recent theoretical results of Sivadas [13]. The present model predicts that the
frequencies will decrease as initial axial compression loads increase, as expected. When
(m, n)"(1, 4) and ¹M

x
"0)12, the dimensionless frequency decreases very rapidly. The

vibration mode changes between (m, n)"(1, 3) and (1, 4) when ¹M
x
increases from 0)12 to the

&&crossing point'' in the "gure. It is observed that the predicted frequencies using the present
model decrease more sharply than the results of Sivadas at (m, n)"(1, 4) and ¹M

x
"0)12 as

the compression loads increase. Again when (m, n)"(2, 4) and ¹M
x
"0)14, dimensionless

frequency decreases very slowly as initial axial compression loads increase. There is
a change in mode between (m, n)"(2, 4) and (2, 3). It is interesting to note that the
frequency decreases more sharply or slowly as axial compression loads increase at the point
where the vibration modes change. It can be seen from the "gure that there is generally good
agreement between the present model and the semi-analytical "nite element model of
Sivadas.

The third calculation was performed for isotropic and orthotropic cylindrical shells
containing an incompressible #uid. The free vibration of this system was analyzed with the
following geometric and physical data, used by both Ramachandran [19] and Selmane and
Lakis [12]: R"0)235 m, h"0)00235 m, o

t
"7850 kgm~3, o

f
"1000 kgm~3, and other

material properties listed in Table 2. The calculations were for the shell both in the absence
Figure 3. E!ect of axial compression on natural frequencies of an empty orthotropic cylindrical shell. **,
** , present model; - - - - -, * -*: results from reference [13].



TABLE 2

Material properties of the cylindrical shells used in the calculations

Material E
x

(Nm~2) Eh (Nm~2) G (Nm~2) l
xh lhx

Isotropy 21)981]1011 21)981]1011 8)454]1010 0)3 0)3
Orthotropy 1)0]1011 0)5]1011 1)0]1010 0)05 0)025

TABLE 3

Comparison of theoretical frequencies obtained by using the present model and the results in
reference [12]

Natural frequency u
mn

Cylindrical Empty shell Fluid-"lled shell
shell

material ¸/R Theory u
14

u
18

u
14

u
18

Isotropic 4 Present method 638 2156 319)1 1352
Reference [12] 659 2187 333.8 1361

Orthotropic 2 Present method 261)7 332)7 130)8 208)5
Reference [12] 240)1 327)3 121)9 203)3
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of, and containing, #uid and the vibration modes (m, n)"(1, 4) and (1, 8) were studied in
particular. The comparison of predicted results obtained by the model and those results
obtained by Selmane and Lakis [12] is presented in Table 3, where the good agreement
(within 9%) between the present model and the other results can be seen.

In order to establish the e!ect of #owing #uid, the in#uence of #ow velocities on the
frequencies of an isotropic cylindrical shell conveying #uid was also investigated. The shell
was simply supported at both ends, and had the following characteristics: o

f
/o

t
"0)128,

l"0)3, ¸/R"2, h/R"0)01, in addition to those in Table 2. The dimensionless #ow
velocities, ;M , and natural frequencies, u6

mn
, were introduced:

;M "2;¸ [3o
t
(1!l2 )/E]1@2/n2h, uN

mn
"2u

mn
¸2[o

t
(1!l2 )/E]1@2/n2h. (31)

Figure 4 shows the present results in comparison with those obtained by Weaver and Unny
[20], and Selmane and Lakis [12]. As expected, it can be seen that the natural frequencies
decrease with #ow velocity. There is also good agreement between the present theory and
the results of reference [12]. Although for a lower velocity (;M )1), the present theory and
the two term Galerkin method [20] give almost the same results, for a higher #ow velocity
there is a substantial di!erence. This is due to the limitation of using too few terms in the
application of Galerkin's approach [12].

Given the generally good agreement between the present model and previous, established
results, the "nal calculation series examined the e!ect of material properties, #ow velocities
and initial axial tensions on the natural frequency of an orthotropic shell system.
Fluid-conveying initially tensioned cylindrical shells simply supported at both ends were
considered, and the following physical data assumed: G

xh/Ex
"0)0218, l

xh"0)26,
lhx"l

xhEh/Ex
, R/h"25, ¸/R"4, o

f
/o

t
"0.645. Three representative cases,

E
x
/Eh"23)986, 5, 1, were investigated, which correspond to a large, medium and small



Figure 4. Isotropic shell conveying #uid: e!ect of #ow velocity on natural frequency for m"2, n"5. **,
present model; **, reference [20]; and - - - -, reference [12].

Figure 5. Initially tensioned orthotropic shell: variation of dimensionless natural frequency with circumferential
wave number at ¹M

x
"0, ** E

x
/Eh"23)986; ** E

x
/Eh"5; - - - - - - E

x
/Eh"1, (a) empty shell; (b) shell

containing quiescent #uid.
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axial sti!ness, respectively, compared with the circumferential sti!ness. The dimensionless
parameters introduced in equations (30b), and (31) were also used. Figure 5 shows the
variation of dimensionless natural frequency with circumferential wave number (plotted as
a continuous variable), as well as E

x
/Eh , for the shells in the absence of, and containing,

quiescent #uid. It can be seen that the greater the value of E
x
/Eh , the smaller the natural

frequency. For a larger value of E
x
/Eh (E

x
/Eh"23)986), the minimum natural frequency is

associated with vibration mode n"3 regardless of whether the #uid is present in the shells.
When E

x
/Eh becomes smaller (E

x
/Eh"5 or 1), the minimum natural frequency is associated

with vibration mode n"2. It can be seen that the presence of #uid signi"cantly reduces the
natural frequencies, as expected.
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Figure 6 shows the variation of dimensionless natural frequency for the representative
dimensionless #ow velocities;M "0)2 and 0)4 with the circumferential wave number (which
is again taken as a continuous variable). It can be seen that, for E

x
/Eh"23)986 the

minimum natural frequency occurs at n"3 and m"1 regardless of the #ow velocity. It
may be noted that for E

x
/Eh"23)986, and a larger #ow velocity ;M "0)4, the natural

frequency at vibration mode m"2 or 3 and n"1 is smaller than that at vibration mode
m"2 or 3 and n"3 respectively. This is probably due to the low circumferential sti!ness of
the system.

Finally, Figure 7 shows the variation of dimensionless natural frequency for
circumferential wave numbers n"2 and 3 with dimensionless axial tension. It can be seen
Figure 7. Initially tensioned orthotropic shell containing quiescent #uid: variation of dimensionless natural
frequency with dimensionless axial tension for the cylindrical shell,**, E

x
/Eh"23)986;**, E

x
/Eh"5; - - - - -

E
x
/Eh"1, (a) n"2; (b) n"3.

Figure 6. Initially tensioned orthotropic shell conveying #uid: vatriation of dimensionless natural frequency
with circumferential wave number at ¹M

x
"0,** E

x
/Eh"23)986;** E

x
/Eh"5; - - - - - E

x
/Eh"1, (a) ;M "0)2;

(b) ;M "0)4.
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that natural frequencies increase as initial axial tensions increase, or #uid #ow velocities and
#uid densities decrease, as expected. Natural frequency increases more sharply with
increasing initial axial tension for a larger E

x
/Eh than for a smaller E

x
/Eh .

4. CONCLUSIONS

A "nite element model, based on Sanders' non-linear theory of thin shells and the classical
potential #ow theory, has been presented for the vibration of initially tensioned thin-walled
orthotropic cylindrical tubes conveying #uid. It has been seen that using a hydrodynamic
pressure formulation derived from the velocity potential, a dynamic coupling condition at the
#uid}structure interface, a non-linear strain}displacement relationship for the geometric
sti!ness matrix due to the initial stresses and hydrostatic pressures, and two-noded frustum
elements yields a method which is both simple and accurate. The e!ects of initial tensions,
hydrostatic pressures and #ow velocities on the natural frequencies of coupled #uid-shells are
incorporated into this general model, which was then used to investigate the free vibration of
thin-walled orthotropic cylindrical tubes conveying steady #uid #ow, and the results
compared with published data. There was generally good agreement. It was found that
natural frequencies increase with increasing circumferential sti!ness (Eh/Ex

), compared with
axial sti!ness. The smaller the circumferential sti!ness, the higher the vibration mode the
minimum natural frequency is associated with. It is interesting to note that, for an orthotropic
cylindrical shell with a larger axial sti!ness (E

x
/Eh) compared with circumferential sti!ness,

the "rst three natural frequencies (m"1, 2, 3) at n"1 become closer to each other with
increasing #ow velocity, certainly more pronouncedly than for higher modes. It is also
found that natural frequencies increase more sharply with increasing initial axial tension for
a larger E

x
/Eh than for a smaller E

x
/Eh .

The model presented here has been shown to be feasible and e!ective, and may be used to
solve further dynamic problems of coupled orthotropic shell}#uid systems.
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APPENDIX A: LIST OF MATRICES USED

The shape function N
t
is

N
t
"

N
tx

N
th

N
tr

"

N
1

0 0 0 N
2

0 0 0

0 N
3

0 0 0 N
4

0 0

0 0 N
5

N
6

0 0 N
7

N
8

, (A.1)

where

N
1
"(1!m ) cos nh, N

2
"m cos nh,

N
3
"(1!m) sin nh, N

4
"m sin nh,

N
5
"(1!3m2#2m3) cos nh, N

6
"(m!2m2#m3 )l cos nh,

N
7
"(3m2!2m3) cos nh, N

8
"(!m2#m3) l cos nh.

The strain}displacement matrix, B
L
, is

B
L
"

B
11

0 0 0 B
15

0 0 0

0 B
22

B
23

B
24

0 B
26

B
27

B
28

B
31

B
32

0 0 B
35

B
36

0 0

0 0 B
43

B
44

0 0 B
47

B
48

0 B
52

B
53

B
54

0 B
56

B
57

B
58

B
61

B
62

B
63

B
64

B
65

B
66

B
67

B
68

, (A.2)

where

B
11
"LN

1
/Lx, B

15
"LN

2
/Lx, B

22
"LN

3
/RLh, B

23
"N

5
/R,

B
24
"N

6
/R, B

26
"LN

4
/RLh, B

27
"N

7
/R, B

28
"N

8
/R,
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B
31
"LN

1
/RLh, B

32
"LN

3
/Lx, B

35
"LN

2
/RLh, B

36
"LN

4
/Lx,

B
43
"!L2N

5
/Lx2, B

44
"!L2N

6
/Lx2, B

47
"!L2N

7
/Lx2, B

48
"!L2N

8
/Lx2,

B
52
"LN

3
/R2Lh, B

53
"!L2N

5
/R2Lh2, B

54
"!L2N

6
/R2Lh2, B

56
"LN

4
/R2Lh,

B
57
"!L2N

7
/R2Lh2, R

58
"!L2N

8
/R2Lh2, B

61
"!LN

1
/2R2Lh, B

62
"3LN

3
/2RLx,

B
63
"!2L2N

5
/RLxLh, B

64
"!2L2N

6
/RLxLh, B

65
"LN

2
/2R2Lh, B

66
"3LN

4
/2RLx,

B
67
"!2L2N

7
/RLxLh, B

68
"!2L2N

8
/RLxLh.

(A.3)

The matrix B
NL

is

B
NL

"

B
NL11

B
NL12

B
NL13

B
NL14

B
NL15

B
NL16

B
NL17

B
NL18

B
NL21

B
NL22

B
NL23

B
NL24

B
NL25

B
NL26

B
NL27

B
NL28

0 0 B
NL33

B
NL34

0 0 B
NL37

B
NL38

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

, (A.4)

where

B
NL11

"(u
x,h/4R2 )LN

1
/Lh!(uh,x/2R)LN

1
/Lh, B

NL12
"1

4
uh,x LN

3
/Lx,

B
NL13

"u
r,x

LN
5
/Lx, B

NL14
"u

r,x
LN

6
/Lx,

B
NL15

"(u
x,h/4R2)LN

2
/Lh!(uh,x/2R)LN

2
/Lh, B

NL16
"1

4
uh,xLN

4
/Lx,

B
NL17

"u
r,x

LN
7
/Lx, B

NL18
"u

r,x
LN

8
/Lx,

B
NL21

"(u
x,h/4R2)LN

1
/Lh!(uh,x/2R)LN

1
/Lh, B

NL22
"1

4
uh,x LN

3
/Lx#uhN3

/R2,

B
NL23

"(u
r,h/R2)LN

5
/Lh!(2uh/R2)LN

5
/Lh, B

NL24
"(u

r,h LN
6
/Lh!2uhLN

6
/Lh)/R2,

B
NL25

"(u
x,h/4R2)LN

2
/Lh!(uh,x/2R)LN

2
/Lh, B

NL26
"1

4
uh,x LN

4
/Lx#uhN4

/R2,

B
NL27

"(u
r,hLN

7
/Lh!2uhLN

7
/Lh)/R2, B

NL28
"(u

r,h LN
8
/Lh!2uhLN

8
/Lh)/R2,

B
NL33

"2(u
r,x

/R)LN
5
/Lh!2(uh/R)LN

5
/Lx, B

NL34
"2(u

r,x
/R)LN

6
/Lh!2(uh/R)LN

6
/Lx,

B
NL37

"2(u
r,x

/R)LN
7
/Lh!2(uh/R)LN

7
/Lx, B

NL38
"2(u

r,x
/R)LN

8
/Lh!2(uh/R)LN

8
/Lx.

For the system subjected to initial axial and circumferential tensions, the geometric sti!ness
matrix kp":X

t
E
1
r0E

2
dX

t
can be rewritten as

kp"PX
t

E
1
r0E

2
dX

t
"p0

xx PX
t

PT
1
P
2
dX

t
#p0hh PX

t

(RT
1
R

2
#QT

1
Q

2
) dX

t
, (A.5)
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where

P
1
"

P
11

0 0 0 P
15

0 0 0

0 P
22

0 0 0 P
26

0 0

0 0 P
33

P
34

0 0 P
37

P
38

,

P
2
"

P
11

!2P
22

0 0 P
15

!2P
26

0 0

0 P
22

0 0 0 P
26

0 0

0 0 P
33

P
34

0 0 P
37

P
38

, (A.6)

Q
1
"

0 0 0 0 0 0 0 0

0 N
3
/R2 0 0 0 N

4
/R2 0 0

0 0 R
33

R
34

0 0 R
37

R
38

,

Q
2
"

0 0 0 0 0 0 0 0

0 N
3

0 0 0 N
4

0 0

0 !2N
3
/R 0 0 0 !2N

4
/R 0 0

, (A.7)

R
1
"

P
11

0 0 0 P
15

0 0 0

0 P
22

0 0 0 P
26

0 0

0 0 R
33

R
34

0 0 R
37

R
38

,

R
2
"

P
11

!2P
22

0 0 P
15

!2P
26

0 0

0 P
22

0 0 0 P
26

0 0

0 0 R
33

R
34

0 0 R
37

R
38

, (A.8)

in which

P
11
"N

1,h/2R, P
15
"N

2,h/2R, P
22
"1

2
N

3,x
, P

26
"1

2
N

4,x
,

P
33
"N

5,x
, P

34
"N

6,x
, P

37
"N

7,x
, P

38
"N

8,x
,

R
33
"N

5,h/R, R
34
"N

6,h/R, R
37
"N

7,h/R, R
38
"N

8,h/R.

APPENDIX B: CHARACTERISTIC EQUATIONS

By applying the virtual work principle to the in"nitesimal element of the deformed
reference surface (see Figure 2), three di!erential equilibrium equations for the case of small
strains and moderately small rotations are obtained [14]:

LN
xx

Lx
#

1

R

LN
xh

Lh
!

1

2R2

LM
xh

Lh
!

1

2R

L
Lh

[H(N
xx
#Nhh)]"0, (B.1)

LN
xh

Lx
#

1

R

LNhh
Lh

#

3

2R

LM
xh

Lx
#

1

R2

LMhh
Lh

!

1

R
(H

x
N

xh#HhNhh)
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#

1

2

L
Lx

[H(N
xx
#Nhh)]"0, (B.2)

L2M
xx

Lx2
#

1

R2

L2Mhh
Lh2

#

2

R

L2M
xh

LxLh
!

1

R
Nhh!

L
Lx

(H
x
N

xx
#HhNxh)

!

1

R

L
Lh

(H
x
N

xh#HhNhh)"0. (B.3)

where H, Hh and H
x

are de"ned as

H"

1

2 A
Luh
Lx

!

1

R

Lu
x

Lh B , H
x
"!

Lu
r

Lx
, Hh"!

1

R A
Lu

r
Lh

!uhB. (B.4)

Substituting equations (1)}(5) into equations (B.1)}(B.3), and only considering initial axial
and circumferential tensions for simplicity, the following equations are obtained:

D
11

L2u
x

Lx2
#

D
12
R A

L2uh
LxLh

#

Lu
r

LxB#
D

33
R A

L2uh
LxLh

#

1

R

L2u
x

Lh2 B
!

D
66

2R2A!
2

R

L3u
r

LxLh2
#

3

2R

L2uh
LxLh

!

1

2R2

L2u
x

Lh2 B
!

1

4RA
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LxLh

!

1

R

L2u
x

Lh2 B (p0
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#p0hh)#N¸

1
(u

x
, uh , u

r
, D

ij
)"0, (B.5)
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1
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x
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where N¸
1
(u

x
, uh , u

r
, D

ij
), N¸

2
(u

x
, uh , u

r
, D

ij
) and N¸

3
(u

x
, uh , u

r
, D

ij
) are the non-linear

terms. If the variational statement is applied to equations (B.5)}(B.7), it can be seen that
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these non-linear terms are associated with the non-linear elastic modulus sti!ness, k
t(NL)

. It
is important to note that the full non-linear strain}displacement relationship is employed to
account for the e!ect of initial stresses/strains on the vibration. In the following, however,
non-linear terms are neglected, which is consistent with neglecting k

t(NL)
. Substituting

u"Mu
x
, uh, u

r
NT"TMA, B, CNTebx :R into equations (B.5)}(B.7), three linear equations are

obtained:

H
11

H
12

H
13

H
12

H
22

H
23

H
13

H
23

H
33

G
A

B

C H"G
0

0

0 H , (B.8)

where H
ij

(i, j"1, 2, 3) are dependent on the circumferential wave number (n), characteristic
value (b), the Poisson ratio (l), k"h2/(12R2) and initial tensions, and given as

H
11
"!D
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55
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45
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55

n4/R2!D
22

/R2!n2p0hh/R2;

T is de"ned by:

T"

cos nh 0 0

0 sin nh 0

0 0 cos nh

. (B.9)

For a non-trivial solution, the determinant must be zero. Consequently, a characteristic
equation is obtained:

H
11

H
12

H
13

H
21

H
22

H
23

H
31

H
32

H
33

"0. (B.10)

APPENDIX C: NOMENCLATURE

B
L
, B

NL
linear and non-linear strain}displacement matrices respectively

C
1
, C

2
constants to be determined from the #ow conditions

c
f

elemental #uid damping matrix
C global #uid}structure damping matrix
D orthotropic shell stress}strain matrix
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e relative error, de"ned by equation (29)
E Young's modulus
E
x
, Eh Young's moduli in the axial and circumferential directions respectively

f
t

elemental external force vector
G shear modulus
G
xh shear modulus with respect to x and h directions

h tube wall thickness
i
1
, i

2
i
1
"1, 2, 3, 4 and i

2
"5, 6, 7, 8

I unit matrix
j j"1, 2,2 , k
J
n
(jr) nth modi"ed Bessel functions of the "rst kind

k number of characteristic roots
k
f

elemental #uid damping matrix
K global #uid}structure sti!ness matrix
¸, l whole and elemental tube lengths respectively
M

xx
, Mhh , M

xh bending moments of the shell in cylindrical co-ordinates
m

t
, m

f
elemental tube and #uid mass matrices respectively

M global #uid}structure mass matrix
n unit outward vector normal to the tube surface (from the tube into the #uid)
N

t
matrix of shape function

N
tr

shape function matrix for the radial displacement, de"ned via u
r
"N

tr
u6

N
xx

, Nhh , N
xh stress components in cylindrical co-ordinates

p
0

hydrostatic pressure
p disturbed #uid pressure
p( hydrodynamic pressure (perturbation pressure)
p
f

stress vector in the #uid at the #uid}structural interfaces
ps
t
, pd

t
vectors of the prescribed tube boundary traction arising from the hydrostatic and
hydrodynamic pressures, respectively

P
1
, P

2
matrices de"ned by equation (A.6)

q
t

vector of the external forces
Q

1
, Q

2
matrices de"ned by equation (A.7)

R tube mean radius
R

1
, R

2
matrices de"ned by equation (A.8)

Re(I) real part of I (n, j, R)
t unit vector tangential to the pipe surface
¹
x

axial tension
¹M
x

dimensionless axial tension, de"ned by equation (30b)
u
x
, uh , u

r
axial, tangential and radial displacements respectively;

; #uid scalar velocity
;1 dimensionless #ow velocity, de"ned by equation (31)
u6 nodal displacement vector, i.e., u6 "MuN

xi
, uN hi , uN

ri
, u

i
, uN

xj
, uN hj , uN

rj
, u

j
NT

U global generalized displacement vector
vL
x
, vL h , vL

r
perturbation #ow velocities in the axial, tangential and radial directions respectively

v total #ow velocity vector
v
0

steady #ow velocity vector
< total #uid #ow velocity
Y
n
(jr) nth modi"ed Bessel functions of the second kind

Greek letters

C
t
, C

f
tube and #uid boundaries respectively

C
t
WC

f
the tube and #uid shared boundary

p generalized stress tensor, de"ned by equation (4)
p0
xx

, p0hh initial axial and circumferential stresses respectively
X

t
, X

f
tube and #uid spatial domains respectively

o
t
, o

f
densities of tube and #uid respectively

.
t

inertia force}acceleration matrix
e, e0 strain and initial strain tensors of the tube respectively
b complex characteristic value
j j"b/R
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m m"x/ l
u
i
, u

j
rotation of ith and jth nodes respectively

U potential #ow function
U

,x
, U

,h , U
,r

operators U
,x
,LU/Lx, U

,h,LU/Lh, and U
,r
,LU/Lr

W de"ned by equation (18)
l Poisson ratio
l
xh , lhx strain in the x and h directions due to a unit strain in the h and x directions

respectively
u complex frequency
u6

mn
dimensionless natural frequency, de"ned in equations (30a) and (31)

N matrix de"ned in equation (3)

Subscripts

¸, N¸ denote the linear and non-linear components respectively
m, n denote the m- and nth longitudinal and circumferential vibration modes respectively
t, f denote the tube and #uid quantities respectively

Superscripts

d, s denote the hydrodynamic and hydrostatic pressures respectively
i, i!1 denote the present and previous numbers of "nite elements respectively
in, ex denote the internal and external surfaces of the tube respectively
T denote the transpose of matrix
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